Quantum-classical Correspondence in the Oracle Model of Computation
نویسندگان
چکیده
The oracle model of computation is believed to allow a rigorous proof of quantum over classical computational superiority. Since quantum and classical oracles are essentially different, a correspondence principle is commonly implicitly used as a platform for comparison of oracle complexity. Here, we question the grounds on which this correspondence is based. Obviously, results on quantum speed-up depend on the chosen correspondence. So, we introduce the notion of genuine quantum speed-up which can serve as a tool for reliable comparison of quantum versus classical complexity, independent of the chosen correspondence principle.
منابع مشابه
Uselessness for an Oracle model with internal randomness
We consider a generalization of the standard oracle model in which the oracle acts on the target with a permutation which is selected according to internal random coins. We show new exponential quantum speedups which may be obtained over classical algorithms in this oracle model. Even stronger, we describe several problems which are impossible to solve classically but can be solved by a quantum...
متن کاملComputation in generalised probabilistic theories
From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that BQP ⊆ AWPP, where AWPP is a classical complexity cla...
متن کاملCs 860: Quantum Algorithms and Complexity
We continue to study quantum complexity classes and various extended models of quantum computing. In this lecture and the next, we examine scenarios under which an algorithm has limited access to an “all-powerful” computational device, called an oracle, and analyse the effects of this on the algorithm’s computational power. In this lecture, we study the model of computation with advice. To begi...
متن کاملQuantum Computation and Quadratically Signed Weight Enumerators
We prove that quantum computation is polynomially equivalent to classical probabilistic computation with an oracle for estimating the value of simple sums, quadratically signed weight enumerators. The problem of estimating these sums can be cast in terms of promise problems and has two interesting variants. An oracle for the unconstrained variant may be more powerful than quantum computation, w...
متن کاملQuantum Harmonic Sieve: Learning DNF with a Classical Example Oracle
This paper combines quantum computation with classical computational learning theory to produce a quantum computational learning algorithm. The result is a fourier-based inductive learning algorithm that performs a learning task for which there is no known classical equivalent -that of learning DNF using only an example oracle. The main result is a quantum algorithm for finding the large fourie...
متن کامل